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I 

LOW-ACCELERATION TAKEOFF FROM 

H. Lass2 
J. 

A SATELLITE ORBIT' 

JET PROPULSION LABORATORY 
California Institute of Technology 

Pasadena, California 

ABSTRACT 

The method of Kryloff and Bogoliuboff for handling 
problems in non-linear mechanics is applied to the problem 
of takeoff from a satellite orbit. The analysis is restricted 
to low acceleration, and covers three cases: constant rad- 
ial thrust, constant tangential thrust, and intermittent thrust. 
The results are compared with those appearing elsewhere 
in  the literature. 

'This paper presents results of one phase of research carried out at the Jet Propulsion Laboratory, California 
Institute of Technology, under Contract No. NASw-Q SpOnSaed by the National Aeronautics and Space Administration. 

'Reseat& Specialist, Space Sciences Division. 

'Research Specialist, Systems Division; membet, ARS. 
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I 
1. INTRODUCTION 

I 
In a 1953 paper (U4 titled “Take-off from a Satellite Orbit,” H. S. Tsien treated the equations of motion 

of a powered rocket in a central gravitational field. His method of analysis was direct, and led to elliptic 

integrals for the radial-thrust case and to series approximations for the circumferential-thrust case. Most of the 

subsequent literature on low-thrust trajectories continues to use Tsien’s results and his  direct method of 

approach. 

I 

I 

Thus, Dobrowolski (2) makes use of the elliptic integral solution to get formulas for the rate of p n -  

cession of the line of apses. Copeland (3) also derives the elliptic integral expressions, and in addition exhibits 

graphs of particular trajectories. Perkins (4, treating the case of low-level tangential thrust, uses  the method of 
I 
I linear perturbati ons. 

Many of the results obtained by these direct methods can be obtained much more quickly by the nonlinear 

techniques of Kryloff and Bogoliuboff (5). A brief statement of this method is given below. For more details, the 

reader is referred to Minorsky (6). 

I 
In the following Sections, the Kryloff-Bogoliuboff method is applied to three different examples of low- 

acceleration orbitsr radial thrust, circumferential thrust, and intermittent thrust. It is seen that the results agree 

with those in the literature, and in certain cases are arrived at much more quickly. 

II. THE KZYLOFF-BOGOLIUBOFF METHOD 

An approximate solution to the nonlinear differential equation 

dx 

dt 
P f (z, sin t )  -= 

can be obtained as follows. Equation [11 yields 

[ 11 

%umbers in parentheses indicate References at end of paper. 
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Since p i s  very small, one may consider that x essentially remains constant during the integration from r = t to 

r =  t + 277. Since sin t is periodic, Eq. [21 b e c o m s  

277 

Finally, the left side of Eq. [SI is replaced by d d d t ,  since the s l o p  of the secant line i s  approximately the 

slope of the tangent line for p .< .< 1. Equation r 13 is replaced by 

an1 

f ( x ,  sin r )  d r  
ax 

~ = p F ( x )  = - 

Eq. [4I can be integrated by a separation of variables. Equation r41 can be ob-dned immediately from 

Eq. [ 11 simply by averaging the right-hand side of Eq. [ 11 over one cycle of the motion in the time domain. 

This Kryloff-Bogoliuboff method can be applied to a system of differential equations involving slowly varying 

quantities. 

r41 

i 111. PLANETARY MOTION WITH A CONSTANT RADIAL PERTURBING FORCE 

I Consider the case of a point mass m under the influence of a central inverse-square-law force of 

attraction upon which i s  superimposed a small constant radial force E. Using polar coordinates (r, 0) with origin 

a t  the center of attraction, the equations of motion are 

2 
GM E 

+ - 9  

d %  

dt2  r2 

= - -  

3 
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, 

2 In the usual way one eliminates dt, using T d 0 = hdt, and replaces r by 1/11 to obtain I 

GM E 
+ u =  

d 2, __ 
d € J 2  h 2  mh2u2 

l 
or the system 

du 

d e  
- = v  

do GM E 

d e  h2 mh2u2 

- - - u + -  - 

For E = 0, the solution of Eq. [?I is5 

c61 

[ 71 I 
, 
I with so and eo constants of integration. In order to apply the averaging ~ O C C S S  of Kryloff-Bogoliuboff, let 

u = s s in  (0 + 4) + GM/h2 and v = s cos (0 + 41, with s and @ unknown functions of e. Thus, 
I 

cos (e  + 4) - s +:) s in  (e + 4) dv ds - = -- 

d e  d e  

’The unpertlobed solution is restricted to closed (i.e. elliptic) orbits. Hyperbolic orbits, being non-cyclic, cannot be 
handled by the present technique. 

4 
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Equations [7I yield 

> 

J 

I 

> c 101 

sin (6' + +) + - "I h2 

d6' 

G M ~  2 
sin (6' + $1 + - 

d6' 

L h2 J 

Applying the averaging process of Kryloff-Bogoliuboff to Eq. [lo] yields 

COS r d r  
E p" = o  as 

- = - -  

2 
E /G2W2 ,] 

GM\2 mh2 \ h4 ) 
s sin r +  __ 

\ 

An integration of Eq. ill: yields 

s = so = constant 

E 121 1 
5 
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so that 

I 

It is seen 

u =  

that the 

1 
- =  
r 

line 

GM 

h2 

- + so s i n  1 ir 
of apsides advances 

mh2 

by the amount 

3 

~ .. rad ians/revo luti on 

while the apogee and perigee distances remain invariant. In the case of a nearly circular orbit, so < < GM/h2, 

the precession rate is 27771, where 7 i s  the ratio of thrust acceleratiin, E/m, to the gravitational acceleration, 

G M / ~ ~ .  

IV. PLANETARY MOTION UNDER A CONSTANT TRANSVERSE PERTURBING FORCE 

A properly oriented reflecting sai l  will experience a smal l  transverse thrust a s  a result of solar radiation. 

In the following example, the transverse thrust is assumed to be constant. 

The equations of motion are given by 

1 d  E 

r dt m 

[ 141 r 
6 
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Let h = r 2  (d B/dt), so that ah/& = (E/m) r and dt = (r2/h)  d e = dB/hu2 for u = l/r. Then 

E 
=-  

dh ah dt  
- = - -  
d e  dt d e  mhu3 

dr dr d e  h dr h _ -  _ _ _ _ -  = - h -  
dt d e  dt ,2 d e  d e  

Letting k = h2 and v = du/d 8 yields 

dk 2~ __ - - -- 
d e  mh3 

du 

d e  
-- - v  

For E = 0, the solutions of Eq. 1161 are 5 

GM 
= -- + so s in  (8 + eo) 

= so (e  + 8,) 
k0 

7 
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Now let 

GM 

k 
u = -- + s sin (6' + 4) 

u = s cos (0 + 4) 

with s, 4, and k unknown functions of 0. Equations [16I become 

ds 

d e  
-_ - - 

rnk2 

1 - 3  

2~ GM cos (e + 4) E COS (e + 4) sin (6' + 4) 
-- + s sin (0 + 4) + _ _ _ _ ~ _ _ _ - - - - -  

9 =  d e  [ mk2s mk 

Applying the averaging process of Kryloff-Bogolinboff yielde 

i 201 
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- 0  
a4 - -  
d e  

From Eq. [2OI, i t  follows that 

-- = -  

dk a (2":."+s2) 

The substitution s = w(k)/k makes possible the integration of Eq. [21I ,  with the result that 

G2M2 - ( sk)2  k = K  . 

4 - 
( s k )  3 

[20 cont'dl 

[211 

[ 221 

with K a constant of integration which depends on the initial values of s and k = h2. Equation [22I is a cubic 

equation in (sk)2,  and the algebraic solution of this equation yields s I= d k ) .  

From Eq. [20] for E .< 0, i t  follows that dk/d8 < 0, so that k tends to zero, and hence r + 0, an 

2 2  2 2 + 1  expected result. From Eq. [22I ,  i t  is seen that the square of the eccentricity of the orbit, E 2  = s k /G M 
for E < 0. For E > 0 it can be seen that k + = and s + 0, so that r + =. 

The apogee distance i s  given by 

s > o  
1 

r a = - ,  
CM 

k 
-s - 

so that in one cycle ra changes by an amount A to, given by 

9 
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\ k  I 

For a nearly circular orbit, ra 2 k/GM, s .<.< 1, it follows that 

. ___. 

L (-:;) c253 
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I V. SATELLITE MOTION UNDER AN INTERMITTENT PERTURBING FORCE 

It is of interest t o  compute the motion of a satellite of the Earth acted upon intermittently by a uniform 

thrust (e.g., an ion motor). The uniform thrust ac t s  upon the satellite for the half range 0 S 6' 6 T ;  in the half 

range 7~ < 6' < 2n, the ion motor is shut off. This periodic thrust program i s  continued, and the motion of the 

satellite i s  compared with the motion of a satellite having no thrust program. The latter satellite i s  assumed to 

move in a circular path. The oblateness of the Earth is neglected since the s m a l l  force field due t o  the Earth's 

oblateness affects the motion of both satellites in much the same fashion. 

I 
I 

In polar coordinates the motion of the satellite is given by 

I 

+ p g F  sin 8 
d 2 r  GM 

2 d t 2  r i c261 

I 
with F = 1 for 0 6 8 

by 4 = - pgFy = 

of mass of the satellite has been neglected. 

T ,  F = 0 for n < 6 < 2n. The potential per unit mass of the ion thrust motor is given 

p g r  sin OF, p < < 1, g being the accekranon oi grttv;&y uC iZ, C,:L', :::!z::. TL- !x- 
I 

Let t2 (d  e/&) = h f Constant, u = l/r, SO that 

. . . .  

11 
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The equations of motion become I 

The substitution 

d e  

d e  
= v  _- 

dh 
- pg F co8 e 

hu3 

GM 

h2 
= + A sin e + B COS 0 

v = A COS 8 - B sin e 

with A and B unknown functions of e, reduces Eq. [281 to 

dA 2pgGM P go = - F sin Ocas 9-- '' F sin e cos e - -- F cos2 e 
d e  h4,3 h2u2 h2u3 

The instantaneous eccentricity of the orbit is given by 

12 
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The e2 terms, etc., are neglected so  that A 2  + B 2  .<.< G2M2/h4. Thus 

CM GM 

3 Bh2 
sin e - -  - - C O B  

h6 ( 3 A h 2  
.-3 (I - _ -  1 - - -  

G 3 M 3  \ GM GM 

In order to apply the averaging process of Kryloff-Bogoliuboff to the system of equations [3OI the 

following integrals are evaluated, 

2n n 
W*B 

GM C4M4 
Fu'~ S i n e c o s e d e  = -- 

0 

P 0 GM GM 3G2M3 
s i n 8 c - B d B  = -- 

2n n 

2 , since E .<< 1 
2h6B 

F " u - 3 c o s 2 e d e  = 2- J ( A  case - B s i n o )  Cos2ede = - - -__-  

0 G3M3 3G3M3 

GM 
Fu-3 Cos2ede  = -- - 

0 

13 
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2T 

GM GM 
0 

8Ah2 

F v u ' ~  sin 8 cos 8 d 8 = 
h6 
- (A cos6 - B sine) s i n B c o s B d 8  

d 
0 G3Y3 

2h6A 2 = -~ ---, since E .<.< 1 

Equations [3OI  become 

Next, we remove the averaging symbol < >, and integrate the system f quations [ = I .  ~ h u  1 

[32 cont'dl 

dA 4 G M  

dh 3 n h 3  
=- - 

14 
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2CM 

3nh2 
A = - - - + K  

with K a conshnt of integration. From Eq. C33I and [MI are obtained I 
G2M2 ( 8 \ 4KGM 

BdB = - - 1 + -- dh + dh 

+ L  
B 2  

2 h4 nh2 

I 

I with L a constant of integration. The assumption A 2  + B 2  << G2M2/ h4 enables one to deduce that h is a 

constant whose value can be obtained by setting the right s ide of Eq. [ S I  equal to  zero and solving for A .  This 

result is not surprising for orbits of s m a l l  eccentricity, since on the average the torque produced by the thrust for 

the range 0 5 6 5 n/2 tends to cancel the torque produced by the thrust for the range n / 2  $ 0 = n; < 

Integrating the second equation of [33], with h and A constants of the motion, yields 
i 

Thus 

If the satellite i e  initially in circular motion, then r = R, GM/h2 = 1/R,  u = 1/R, S = 0, at 8 = 0, t = 0, 
I 

so that 

15 
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Hence 

K - 1 c I ( ( 1 - - 8 G )  9 n p g h 4  

3 n h 2  

and 

neglecting p 2 terms, so that 

since h2 = GMR. The change in r per revolution is 

3 
- n p g R 3  

GM 

The instantaneous eccentricity is given by 

16 
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I For /A lo”, GM/R2 II g, one has  E = (3/4)(1O”) Jlts2, so that the eccedricity will remain 

2 
I smal l  for a considerable number of revolutions. Thus we are justified in omitting E terms, etc. 

From r2(d8/dt)  = h, and fiom Eq. [411 one obtains 

e = - t +  h 3 p g R 2  [cos (5- ’> + u(. ht sin (f; t) - 1 1  
R2 GM 

[441 

I The coordinates of the unperturbed satellite are ro = R, eo = ht/R2. The distance p between the two 

I satellites is given by 

I - 
P =  3 p g R 3  GM { ~ [ s i n ( ~ ) - ( ~ c o s ( ~ - J 2  + cos[;)+ :sin(:)- 3 2}2  C45I 

VI. COMPARISON WITH OTHER RESULTS 

It was shown above, in the discussion of a constant radial perturbing farce that far a small radial thrust 

the trajectory is given by Eq. [131 which may be written in the form 

h2 

GM 
r =  

1 soh2 

GM 
1 +-  s in  [(I - r )  6 + +o 

17 
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where 

Equation [l] is almost in standard form for an ellipse. In fact, by setting E = 0 it is seen that the osculating 

ellipse has the following parameters: 

semilatus-rectum = h2/cu 
eccentricity = soh2/CM 

angle from pericenter to origin = +o n/2 

In particular, for a near-circular orbit so i s  small. Therefore, by Eq. [MI, 

h2  * CMr 

and by Eq. [47I, 

It follows from ,Eq. [46] and [49] that the line of apsides advances by the amount 2n~radiane/revolution. 

[481 

Dobrowolski indicates a regression of the line of apses. However, he apparently used an  incorrect 

expansion for his parameter b to substitute in his general solution. Substitution of the correct expansion gives a 

result in agreement with ours. Copeland's Fig. 2 further confirms the result that the line of apsides advunces 

rather than regresses. 

For near-circular motion we can evaluate the constants so and +o as follows. Assume that initially 

r = ro,  and f = 0 and 0 = 0. Then, by Eq. [MI, 

+ so sin +o 1 CM - - - 

'0 h 2  

18 
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and, from the fist derivative of Eq. [46I, 

o = so (1 - r )  cos +o 

It then follows that 

n 
$0 = 

2 

and 

GM 1 
so = -- -- - 

h2 ' 0  

But, since we are assuming near-circular motion, Eq. [61 gives d2u/dG2 2 0, and 

hence, substituting in Eq. [ S I ,  

7) 
so - - 

521 

[531 

'0 

To get the maximum excursion of the radial distance r, it is only necessary to take the difference between 

rmOx and rmin as  obtained from Eq. [MI and write 

br rOG2M2 

' 0  1 - s0h4 

19 
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which, for the near-circular orbit reduces to 

in agreement with Dobrowolski. 

In the case of circumferential thrust, the maximum radial distance in each cycle does not remain 

stationary. Its rate of growth is given by Eq. [ 251 for the nearly circular orbit, Le. 

This result agrees directly with that of Perkins (4) as can be seen by substituting A + =  2 n i n  Eq. [29I of 

Perkin's paper. 

Briefly, application of the non-linear techniques of Kryloff and Bogoliuboff has  been shown to provide 

concise solutions to the problems of small radial thrust and smal l  circumferential thrust previously discussed in 

the literature, and to the problem of intermittent thrust, not previously published. It is hoped that this work will 

inspire more extensive application of the method. 

20 



Jet Propulsion Laboratory Technical Release No. 34-99 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

Tsien, H.S., “Take-Off From Satellite Orbit”, Jownol of the American Rocket Society, 23:233 - 236, 

July-A ugus t 1953. 

Kryloff, N., and N. Bogoliuboff. “Introduction to Non-Linear Mechanics,” Kiev, 1937. Chapters 10- 12. 

Translation: tr by Solomon Lofschetz, Princeton University Press, Princeton, 1943. (See Ref. 6) .  

Dobrowolski, A., “Satellite Orbit Perturbations Under a Continuous Radial Thrust of Small Magnitude,” 

Jet Propulsion, 28:687- 8, October 1958. 

Copeland, Jack, “Interplanetary Trajectories Under Low-Thrust Radial Acceleration,” ARS Journal, 

29:267 - 271, April 1959. 

Perkins, Frank M., “Flight Mechanics of Low-Thrust Spacecraft,” J o w n d  of the Aero/Space Sciences, 

26:291- 297, May 1959. 

Minorsky, N., “Introduction to Non-Linear Mechanics”, J. W. Edwards, Ann Arbor, 1947. Chapter X, based 

on cited chapters of Kryloff and Bogoliuboff (Ref. 2). 

21 


